skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jiang, Li-Qing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Mapped monthly data products of surface ocean acidification indicators from 1998 to 2022 on a 0.25° by 0.25° spatial grid have been developed for eleven U.S. large marine ecosystems (LMEs). The data products were constructed using observations from the Surface Ocean CO2Atlas, co-located surface ocean properties, and two types of machine learning algorithms: Gaussian mixture models to organize LMEs into clusters of similar environmental variability and random forest regressions (RFRs) that were trained and applied within each cluster to spatiotemporally interpolate the observational data. The data products, called RFR-LMEs, have been averaged into regional timeseries to summarize the status of ocean acidification in U.S. coastal waters, showing a domain-wide carbon dioxide partial pressure increase of 1.4 ± 0.4 μatm yr−1and pH decrease of 0.0014 ± 0.0004 yr−1. RFR-LMEs have been evaluated via comparisons to discrete shipboard data, fixed timeseries, and other mapped surface ocean carbon chemistry data products. Regionally averaged timeseries of RFR-LME indicators are provided online through the NOAA National Marine Ecosystem Status web portal. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract. Climatologies, which depict mean fields of oceanographic variables on a regular geographic grid, and atlases, which provide graphical depictions of specific areas, play pivotal roles in comprehending the societal vulnerabilities linked to ocean acidification (OA). This significance is particularly pronounced in coastal regions where most economic activities, such as commercial and recreational fisheries and aquaculture industries, occur. In this paper, we unveil a comprehensive data product featuring coastal ocean acidification climatologies and atlases, encompassing the fugacity of carbon dioxide, pH on the total scale, total hydrogen ion content, free hydrogen ion content, carbonate ion content, aragonite saturation state, calcite saturation state, Revelle factor, total dissolved inorganic carbon content, and total alkalinity content. These variables are provided on 1° × 1° spatial grids at 14 standardized depth levels, ranging from the surface to a depth of 500 m, along the North American ocean margins, defined as the region between the coastline and a distance of 200 nautical miles (∼370 km) offshore. The climatologies and atlases were developed using the World Ocean Atlas (WOA) gridding methods of the NOAA National Centers for Environmental Information (NCEI) based on the recently released Coastal Ocean Data Analysis Product in North America (CODAP-NA), along with the 2021 update to the Global Ocean Data Analysis Project version 2 (GLODAPv2.2021) data product. The relevant variables were adjusted to the index year of 2010. The data product is available in NetCDF (https://doi.org/10.25921/g8pb-zy76, Jiang et al., 2022b) on the NOAA Ocean Carbon and Acidification Data System: https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0270962.html (last access: 15 July 2024). It is recommended to use the objectively analyzed mean fields (with “_an” suffix) for each variable. The atlases can be accessed at https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/synthesis/nacoastal.html (last access: 15 July 2024). 
    more » « less
  3. Abstract. The Global Ocean Data Analysis Project (GLODAP) is asynthesis effort providing regular compilations of surface-to-bottom oceanbiogeochemical bottle data, with an emphasis on seawater inorganic carbonchemistry and related variables determined through chemical analysis ofseawater samples. GLODAPv2.2022 is an update of the previous version,GLODAPv2.2021 (Lauvset et al., 2021). The major changes are as follows: datafrom 96 new cruises were added, data coverage was extended until 2021, andfor the first time we performed secondary quality control on all sulfurhexafluoride (SF6) data. In addition, a number of changes were made todata included in GLODAPv2.2021. These changes affect specifically theSF6 data, which are now subjected to secondary quality control, andcarbon data measured on board the RV Knorr in the Indian Ocean in 1994–1995 whichare now adjusted using certified reference material (CRM) measurements made at the time. GLODAPv2.2022includes measurements from almost 1.4 million water samples from the globaloceans collected on 1085 cruises. The data for the now 13 GLODAP corevariables (salinity, oxygen, nitrate, silicate, phosphate, dissolvedinorganic carbon, total alkalinity, pH, chlorofluorocarbon-11 (CFC-11), CFC-12, CFC-113, CCl4,and SF6) have undergone extensive quality control with a focus onsystematic evaluation of bias. The data are available in two formats: (i) assubmitted by the data originator but converted to World Ocean CirculationExperiment (WOCE) exchange format and (ii) as a merged data product withadjustments applied to minimize bias. For the present annual update,adjustments for the 96 new cruises were derived by comparing those data withthe data from the 989 quality-controlled cruises in the GLODAPv2.2021 dataproduct using crossover analysis. SF6 data from all cruises wereevaluated by comparison with CFC-12 data measured on the same cruises. Fornutrients and ocean carbon dioxide (CO2) chemistry comparisons toestimates based on empirical algorithms provided additional context foradjustment decisions. The adjustments that we applied are intended to removepotential biases from errors related to measurement, calibration, and datahandling practices without removing known or likely time trends orvariations in the variables evaluated. The compiled and adjusted dataproduct is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate,4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % inthe halogenated transient tracers. The other variables included in thecompilation, such as isotopic tracers and discrete CO2 fugacity(fCO2), were not subjected to bias comparison or adjustments. The original data, their documentation, and DOI codes are available at theOcean Carbon and Acidification Data System of NOAA NCEI (https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/GLODAPv2_2022/, last access: 15 August 2022). This site also provides access to themerged data product, which is provided as a single global file and as fourregional ones – the Arctic, Atlantic, Indian, and Pacific oceans –under https://doi.org/10.25921/1f4w-0t92 (Lauvset et al.,2022). These bias-adjusted product files also include significant ancillaryand approximated data, which were obtained by interpolation of, orcalculation from, measured data. This living data update documents theGLODAPv2.2022 methods and provides a broad overview of the secondary qualitycontrol procedures and results. 
    more » « less
  4. null (Ed.)
    Abstract. Internally consistent, quality-controlled (QC) data products play animportant role in promoting regional-to-global research efforts tounderstand societal vulnerabilities to ocean acidification (OA). However,there are currently no such data products for the coastal ocean, where mostof the OA-susceptible commercial and recreational fisheries and aquacultureindustries are located. In this collaborative effort, we compiled, quality-controlled, and synthesized 2 decades of discrete measurements ofinorganic carbon system parameters, oxygen, and nutrient chemistry data fromthe North American continental shelves to generate a data product calledthe Coastal Ocean Data Analysis Product in North America (CODAP-NA). Thereare few deep-water (> 1500 m) sampling locations in the currentdata product. As a result, crossover analyses, which rely on comparisonsbetween measurements on different cruises in the stable deep ocean, couldnot form the basis for cruise-to-cruise adjustments. For this reason, carewas taken in the selection of data sets to include in this initial releaseof CODAP-NA, and only data sets from laboratories with known qualityassurance practices were included. New consistency checks and outlierdetections were used to QC the data. Future releases of this CODAP-NAproduct will use this core data product as the basis for cruise-to-cruisecomparisons. We worked closely with the investigators who collected andmeasured these data during the QC process. This version (v2021) of theCODAP-NA is comprised of 3391 oceanographic profiles from 61 researchcruises covering all continental shelves of North America, from Alaska toMexico in the west and from Canada to the Caribbean in the east. Data for 14variables (temperature; salinity; dissolved oxygen content; dissolvedinorganic carbon content; total alkalinity; pH on total scale; carbonateion content; fugacity of carbon dioxide; and substance contents of silicate,phosphate, nitrate, nitrite, nitrate plus nitrite, and ammonium) have beensubjected to extensive QC. CODAP-NA is available as a merged data product(Excel, CSV, MATLAB, and NetCDF; https://doi.org/10.25921/531n-c230,https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0219960.html, last access: 15 May 2021)(Jiang et al., 2021a). The original cruise data have also been updated withdata providers' consent and summarized in a table with links to NOAA'sNational Centers for Environmental Information (NCEI) archives(https://www.ncei.noaa.gov/access/ocean-acidification-data-stewardship-oads/synthesis/NAcruises.html). 
    more » « less
  5. Effective data management plays a key role in oceanographic research as cruise-based data, collected from different laboratories and expeditions, are commonly compiled to investigate regional to global oceanographic processes. Here we describe new and updated best practice data standards for discrete chemical oceanographic observations, specifically those dealing with column header abbreviations, quality control flags, missing value indicators, and standardized calculation of certain properties. These data standards have been developed with the goals of improving the current practices of the scientific community and promoting their international usage. These guidelines are intended to standardize data files for data sharing and submission into permanent archives. They will facilitate future quality control and synthesis efforts and lead to better data interpretation. In turn, this will promote research in ocean biogeochemistry, such as studies of carbon cycling and ocean acidification, on regional to global scales. These best practice standards are not mandatory. Agencies, institutes, universities, or research vessels can continue using different data standards if it is important for them to maintain historical consistency. However, it is hoped that they will be adopted as widely as possible to facilitate consistency and to achieve the goals stated above. 
    more » « less